
-'-'

•

North Star BASIC

Version 6
Version 6-FPB

Copyright 1977, North Star Computers, Inc.

!
1

2

INTRODUCTION

North Star BASIC was implemented by Dr. Charles A. Grant and
Dr. Mark Greenberg of North Star Computers, Inc. This manual
describes Version 6, an extended disk BASIC intended for use with
the North Star MICRO DISK SYSTEM. Version 6 includes such
features as mUltiple-dimensioned arrays, strings, multiple-lined
functions, formatted output, and machine language subroutine
capability. programs can be loaded and saved using disk files,
and data files may be accessed both sequentially and randomly.
Version 6-FPB has been specially assembled for use with the North
Star Floating Point Board, for increased speed and reduced memory
requirements. [If you order an FPB for use in conjunction with
the MICRO DISK SYSTEM, be sure to request that BASIC be delivered
on diskette rather than paper tape.] version 6 has been assembled
for a-digit precision. For accuracy of 2, 4, 6, 10, 12, or 14
digits, a special order may be made. Version 6 is assembled with
origin at 2A00 hex. Special orders may also be made for
different origins.

This manual assumes familiarity with some version of BASIC on the
part of the reader. There are many tutorial and advanced
publications on BASIC available in both stores and libraries.

The North Star Version 6 BASIC software is intended for use only
with the North Star MICRO DISK SYSTEM, and no license is granted
for any other use. Improved copies of Version 6, as they become
available, may be obtained for a nominal copying charge.

North Star BASIC Version 6

INPUTTING A PROGRAM

Every program line begins
typed to BASIC in command
processed by the editor.
may occur:

with a line number. Any line of text
mode that begins with a digit is
There are four possible actions which

-.-
1) A new line is added to the program. This occurs if the line

number is legal (range is e thru 65535) and at least one
character follows the line number in the line.

2) An existing line is modified. This occurs if the line
number matches the line number of an existing line in the
program. That line is modified to have the text of the
newly typed-in line.

3) An existing line is deleted. This occurs if the typed-in
line contains only a line number which matches an existing
line in the program.

4) An error is generated. If the line number is out of range,
or the line is too long, or the memory would become full,
then an error message is generated and no other action is
taken by BASIC.

Blanks

Blanks preceding a line number are ignored. Blanks are permitted
anywhere in a line for indentation purposes, except within
reserved words, the line number, or constants.

Multiple statements per line

Multiple program statements may appear on a single line, if
separated by a (\) back slash. A line number must appear only at
the beginning of the first statement on the line.

Typing mistakes \00,.. _

If a typing mistake occurs durini}...-:.t·h~.ring of any line
text to BASIC, there are two pos~~re:~-<::'brxective actions
available: - -

When the user types an (~) _at-sign character, BASIC
completely ignores all input on the current line being
in, and types a ca~riag~ return. The correct line may
be typed to BASIC.

When the user types a left-arrow (under-line on some
keyboards), BASIC will ignore the previously typed
character.

of

typed
then

--
Also, the line editor may be used to correct typing errors (see ..,,)

3 North Star BASIC Version 6

•

,

Appendix 2).

Compatibility

Certain characters, when they appear in programs, are
automatically translated into other characters. This is done to
minimize the effort of converting programs written for other
BASIC systems. In particular, left bracket ([), right bracket
(]), colon (:), and semi-colon (;) are converted to left paren,
right paren, back slash (\), and comma (,) respectively. "This
conversion is not done within quoted strings in a program.

SAVING AND RELOADING PROGRAMS

BASIC programs may be loaded and saved using disk files existing
on any mounted diskette. The LOAD and SAVE commands are
described below. Familiarity with the DOS file naming
conventions is required (see the accompanying Disk Operating
System manual).

An error will be generated from a LOAD or SAVE command if the
specified file is not a currently existing file with type 2. In
addition, a SAVE command will give an error if the named file is
not large enough to contain the program to be saved, or if the
diskette is write-protected.

CONTROL-C

Typing the control-C character (ETX on some keyboards) has the
effect of prematurely interrupting BASIC from whatever it is
doing. If a LIST is in progress, the listing will be terminated
at the completion of the output of the current line. If a RUN or
CQNT is in progress, then execution will stop after the
completion of the currently executing statement •.

DIRECT STATEMENTS

When BASIC is in command mode, certain statements may be typed
for immediate execution. This is typically used for examining
the values of certain variables to diagnose a programming error.
Note that an exclamation point (1) may be used as a shorthand way
of typing the PRINT reserved word. No direct statement is
permitted which transfers control to the BASIC program. Also,
DATA, DEF, FOR, NEXT, INPUT, and REM are forbidden.

North Star BASIC Version 6 4

COMMANDS

RUN <optional line number>
Begin program execution either at the first line of the
program or else at the optionally supplied line number.

LIST <optional line number>,<optional second line number>
If no arguments are supplied, then print the entire existing
program. If one line number is supplied, then print the
program from the specified line number to the end. If two
line n~mbers are supplied, then print the program in the
region between the two line numbers.

SCR
Delete (scratch) the existing program and data, in
preparation for entering a new program.

1REN [<optional beginning value>,<optional increment value>
Renumber the entire existing program. If the first argument

f,/ ,1',10 is not supplied, then HI is used as the initial statement
it J. renumber value. If the second argument is not supplied,

. then 10 is used as the increment value.

CONT
This command causes execution of a running BASIC program to
continue after a STOP statement or after a control-C stop.

'LINEI <number of characters>
This command defines the line length of the user terminal.
The maximum value is 132. The initial value is 72.

NULL <number of nulls>
This command specifies the number of ACSII null characters
to output following the output of each carriage return
character. The initial value is zero.

LOAD <file name>
This command will load a BASIC program from the specified
disk file.

SAVE <file name>
This command will save the current BASIC program on the
specified disk file.

EDIT <line number>
This command specifies a line to be editted by the line
editor. See Appendix 2 for details.

BYE
This command will exit BASIC and cause control to be
transferred to the DOS. The text of the existing BASIC
program is not modified, and it is possible to continue
BASIC from the DOS later, if desired (see below).

•

•

5 North Star BASIC Version 6

CONSTANTS

Magnitude range: .IE-G3 thru .99999999E+G3

Constants appearring in programs are rounded to 8 digits if
necessary. Internal representation of numbers is binary­
coded-decimal.

NAMES

All user defined names are one or two characters long: a
letter of the alphabet optionally followed by any digit.
For example: A, Z0, and Q9 are legal names. The same name
may be used to identify different values, as long as the
values they identify are of different types. For example,
it is possible to have a scalar variable named AI, an array
named AI, a string named AI$ and functions named FNAI and
FNAl$. There is no relationship between these entities.

OPERATORS

Numeric: +, -, I, *, T (or ~ on some keyboards)

Relational: =, <, >, <>, >=, <=
A relational operation gives a 1 (true) or 0 (false) result.

Boolean: AND, OR, NOT
A Boolean operand is true if non-zero, and false if zero.
The result of a boolean operation is I (true) or 0 (false).

PRECEDENCE OF OPERATORS
All operators can be used in any numeric expression. Higher
precedence operators are evaluated first, and operators of
equal precedence are evaluated left to right. The operators
are listed below in order of increasing precedence.

OR
AND
=,<,>,=,<>,<=,>=
+.-
*.f
T
NOT, unary minus (-)

North Star BASIC Version 6 6

STATEMENTS

File accessing statements are described in a
Consult the example programs in the Appendix
the use of a particular type of statement.

LET

later section.
for questions about

The LET is optional in assignment statements. Multiple
assignments are not allowed. The statement A=B=0 assigns
true or false to A depending on whether or not B equals 0.

IF

An IF statement may optionally have an ELSE clause. A THEN
or ELSE clause may be a LET statement, a RETURN statement,
another IF statement or a GOTO, for example. Additional
statements appearing on a line following an IF will be
executed regardless of success or failure (unless a GOTO is
executed). If either the THEN clause or the ELSE clause is
a simple GOTO, then the GOTO reserved word may be optionally
omitted.

100 IF A=B THEN 150 ELSE A=A-l

FOR """...;
FOR loops may be mUltiply nested. The o?tional STEP value
may be positive or negative. It is possible to specify
values such that the FOR loop will execute zero times. For
example,

100 FOR J=5 TO 4 \ PRINT J \ NEXT

NEXT

A NEXT statement may optionally specify the control variable
for the matching FOR statement, as a check for proper
nesting.

GOTO

The GOTO statement will transfer program control to the
statement with the specified line number.

ON

The ON statement provides a multi-branched GOTO capability.
For example,

100 ON J GOTO 500,600,700

will branch to Sa0, ~00 or 700 depending on the value of J

7 North Star BASIC Version 6

•

•

•

•

being 1, 2, or 3 respectively. Other values of J will cause
an error.

EXIT

The EXIT statement is identical to a GOTO except that it has
the effect of terminating one active FOR loop and reclaiming
the associated internal stack memory. It should be used for
branching out of a FOR loop.

STOP

The STOP statement will stop program execution and print a
message.

END

The END statement will stop program execution without
printing a message.

REM

The REM statement may be used for inserting comments into a
BASIC program.

READ

The READ statement is used to sequentially access numeric or
string values contained in DATA statements.

DATA

The DATA statement is used to specify lists of string and
numeric values which can be accessed by the READ statement.

RESTORE

The RESTORE statement may optionally include a line number,
specifying where the READ pointer is to be restored to. In
the absence of the optional line number, the READ pointer is
set to the first line of the program.

INPUT
INPUTl

The INPUT or INPUTl statement may optionally specify a
literal string which is typed on the terminal as a prompt
for the input instead of a question mark. To inhibit the
echoing of the carriage return at the end of user input, use
the INPUTl statement.

100 INPUT IlTYPE VALUES: ",Vl,V2

,
1 North star BASIC version 6 8

GOSUB

The GOSUB statement may be used to call a BASIC subroutine.
Control is passed to the specified line number. When a
RETURN is executed by the subroutine, then control returns
to the statement following the GOSUB statement.

RETURN

The RETURN statement is used to return from a BASIC
subroutine.

PRINT

The PRINT statement may include a list of expressions,
variables, or constants separated by (,) commas. If the
list of variables is terminated by a comma, then a final
carriage return is not printed. The null PRINT statement
will cause only a carriage return to be printed. A semi­
colon is equivalent to a comma in the print list. All
numeric values are printed in free format, separated by a
blank, unless formatting is specified. If a value will not
fit on the current output line, then it is printed on the
next output line. Advancement of the printer to a specified
output position may be accomplished with the TAB function.
Formatting may be accomplished by including a "format "".
string" in a PRINT statement (see below). An exclamation
point (!) may be used as a shorthand way of typing the PRINT
reserved word.

FILL

OUT

This statement permits filling a specified byte
computer memory with a given expression value.
FILL 100,J+3 will fill memory byte 100 with the
encoded value of J+3, truncated to 8 bits.

in the
For example,
binary

9

This statement permits doing an 8080 or Z80 OUT instruction.
For example, OUT 5,3 will perform an OUT 5 instruction with
3 in the computer accumulator.

North Star BASIC Version 6

ARRAYS

Arrays may be dimensioned with any number of dimensions, limited
only by available memory, e.g.,

100 DIM A{l), 87(5,2,3,4,5,6)

Array indexing starts at element 0. Array A in the above example
actually has two elements, A(0) and A(l). Use of an
undimensioned array causes automatic dimensioning to a one­
dimension, 10 element array. Arrays may not be re-dimensioned
within a program.

STRINGS

Strings of a-bit characters may be dimensioned to any size,
limited only by available memory, e.g.,

100 DIM A$ (1) ,Al$ (10000)

Note that a string name is a variable name followed by a ($)
dollar sign. The value of a string variable after the DIM
statement is a full string of blanks. Substrings of a string
variable may be accessed as A$(N,M) which is the substring of
characters N thru M. For example, if A$ is "ABCDEF" then A$(3,5)
is "CDE". Alternatively, A$(N) identifies the sUbstring
including characters N thru the last character in the string. A
substring reference must specify positions within the current
length of a string. The program:

IfH'! A$="l1
110 A$(2,3)="AB"

will give an error in line 110 because A$ has length of less than
3 at the time of the assignment.

If an assigned value is longer than the destination string or
sUbstring, then it is truncated to fit. If an assigned value to
a sUbstring is shorter than the sUbstring, then the extra
characters of the substring are left unmodified. A string
variable used before being DIMensioned is given the default
dimension of 10. Strings may not be redimensioned within a
program. Indexing string variables begins at 1, not 0.

Strings and sUbstrings may be concatenated with the use of the
plus (+) operator. (When large strings are concatenated,
sufficient free storage must exist to contain the entire
concatenated str iog.)

Strings, sUbstrings and string expressions may be used in
conjunction with: LET, READ, DATA, PRINT, IF, and INPUT
statements. The string IF statement does alphabetic comparisons

North Star BASIC Version 6 10

1-----

when the relational operators are used, .e.g.

100 IF A$+B$<"SMITH" THEN 50

When string variables are INPUT, they must not be quoted. When
strings appear in DATA statements, they must be quoted. The
boolean operators (AND, OR, and NOT) may not be used in string
expressions.

For those familiar with another popular method of accessing
strings and substrings in BASIC, the following will be of
interest:

LEFT$(A$,7)
RIGHT$(A$,5)
MID$ (A$,5,7)

is equivalent to
is equivalent to
is equivalent to

A$ (1, 7)
A$ (5)
A$(5,7)

•

i

Also, the North Star string methods may be used to construct a
"table of strings". For example, A$(J*10,J*10+9) is the Jth 10­
character SUbstring within A$.

11 North Star BASIC Version 6

•

USER DEFINED FUNCTIONS

user-defined functions (either of type string or numeric) may be
I-line or multiple line functions. There may be any number of
numeric arguments. Parameters are "local" to a particular call
of a function. That is, the value of the variable is not affected
outside of the execution of the function.

Functions are defined before execution begins (at RUN time), so
definitions need not be executed, and functions may be defined
only once.

Multiple line functions must end with a FNEND statement. A
mUltiple-line function returns a value by executing a RETURN
statement with the value to be returned, for example:

100 DEF FNA(X,Y,Z)
200 IF Z=l THEN RETURN X
300 X=Y*Z+X*3
400 RETURN X
500 FNEND
600 PRINT FNA(1,2,X+Y)

I~

North Star BASIC Version 6 12

-~

BUILT IN FUNCTIONS

FREE(~) returns number of bytes remaining in free storage.
ABS(expr) returns the absolute value of the expression
SGN(expr) returns 1, ~, or -1 if the value is +, ~, or -
INT(expr) returns the integer portion of the expression value
LEN (string name) returns the length of the specified string
CHR$(expr) returns a string with the specified character
ASC(string name) returns ASCII code of first character in string
VAL(string expr) returns the numeric value of the string
STR$(expr) returns a string with the specified numeric value
SIN(expr) returns SINE of the expression
COS (expr) returns the COSINE of the expression
RND(expr) returns a random number between 0 and 1 (see below)
LOG(expr) returns the natural log of the expression
EXP(expr) returns the value of e raised to the specified power
SQRT(expr) returns the positive square root of the expression
CALL(expr,expr) machine language subroutine call (see below)
EXAM (expr) return contents of addressed memory byte
INP(expr) return result of 8080 IN to specified port
TYP(expr) return file item type (see below)
TAB (expr) Advance tab in PRINT statement

MACHINE LANGUAGE SUBROUTINE INTERFACING

The built-in function CALL takes a first argument which is the ~.

address of a machine language subroutine to call. The optional
second argument is a value which is converted to an integer and
passed to the machine language subroutine in DE. The CALL
function returns as value the integer which is in HL when the
machine language subroutine returns. For example:

10 A=CALL(500)
20 B=CALL(X,Y+3)/Z

RANDOM NUMBER GENERATOR

~he RND function may be used to generate a sequence of pseudo­
random numbers between 0 and 1 by the Rawson method. If the
argument to the RND function is 0. then the next pseudo-random
number in the sequence is returned as value. Otherwise, if the
argument expression is a value between 0 and 1. the sequence will
be restarted with the supplied value as the "seed". For example.
the program:

10 J=RND(.5)
20 FOR J=l TO 10
30 PRIWf RND(0)
40 NEXT

will set the seed to .5 and then print 10 pseudo-random values. .",,;f

j
I

13 North Star BASIC Version 6

'A
J

FORMATTED OUTPUT

If no format string is ~resent in a PRINT statement, then all
numeric values will be printed in the "default format". (The
default format is initially set to be free format.) A format
string may appear anywhere in the print list and must begin with
a per cent (%) character, e.g.

PRINT %$10F2,J

A format string consists of a per cent character (%) followed by
any number of format characters followed by a format
specification. The format characters are:

C place commas to the left of decimal point as needed
$ put a dollar sign to the left of value
z suppress trailing zeroes
make this format string the default format

Format specifications (similar to FORTRAN) are:

nFm
right

F-format. The value will be printed in a n-character field,
justified, with m digits to the right of decimal point.

1

-

nI I-format. The value will be printed in a n-character field,
right justified, if it is an integer. (Otherwise an error
message will occur.)

nEm E-format. The value will be printed in scientific notation
in a n-character field, right justified, with m digits to the
right of the decimal point.

All printed values are rounded if necessary. A null format string
specifies free format.

North Star BASIC Version 6 14
i

.-J

ACCESSING DATA FILES

All data files accessed p...YJ~ASIC musJ;__haye _b_~_e.rL_c:r:_eated prio.r to
use. Files to be accessed as BASIC data files must be of type 3.
Also, if a file is greater than 256 blocks (64K by!~s1 ~l?-_E:!n the
area_.. of the-rrle-- pa-sF--64K is not accessible.

Both numeric and string data may be written on a file. BASIC
buffers the file data in RAM in order to cause the minimum amount
of disk activity, but the size of the buffer has no effect on the
way that data may be written in the file.

OPEN #<file number>,<file name>
Before a file can be accessed, it must be "opened ll

• The
OPEN statement assigns a "file number" to the specified
file. When actual accessing of the file is begun, the file
number is used to identify the file. There are 4 legal file
numbers: 0, 1, 2 and 3. The file name may be any string
expression which evaluates to a legal file name (and
optional disk unit specification) as described in the DOS
manual. The OPEN statement also sets the "file pointer" to
the beginning of the file (see below). For example:

OPEN #0,"ABC"
OPEN #3 ,A$
OPEN #J+l,A$+",2"

•

CLOSE #<file number>
The CLOSE statement serves two purposes. First, it prevents
any further access to the file through the assigned file
number. Secondly, the CLOSE statement forces the contents
of the file buffer to be written to the file if necessary.
It is very important to CLOSE a file as soon as possible
after completion of writing to a file.

The READ and WRITE statements may be used to
either a sequential or random access manner.
will be discussed first.

access a file in
Sequential access

WRITE #<file number>,<list of items>
The WRITE statement will write a list of numeric and/or
string values to the specified file. Writing will begin at
the current value of the "file pointer". (Note that the
file pointer is always set to the beginning of a file after
an OPEN.) After the last item in the list has been written,
a special "end-mark" character will be written in the file,
and the file pointer will be set to address the end-mark.

•

15 North Star BASIC Version 6

'"

-

Thus, a subsequent WRITE statement will cause the new list
of items to overwrite the end-mark and be written following
the previously written data, with the file pointer once
again updated accordingly. For example: -

WRITE to,A
WRITE #3 ,A$
WRITE #J,"ABC",SIN(X) ,A$+B$

READ #<file number>,<list of variables>
The READ statement will read data items from the file into
the specified variables. The items are read from the file
starting at the current value of the file pointer. At the
end of the READ statement, the file pointer is set to point
immediately after the last item read. An error will be
generated if an end-mark is encountered before the list of
variables is exhausted, or if the type of data in the file
does not match the type of variable into wwich it is being
read. For example,

READ HI,A
READ #J,A,A$,B$,B

The TYP function will return a value which indicates the type of
the item in the file addressed by the file pointer. The argument
expression must evaluate to the file number of a currently open
file. The TYP function will return:

o if an end-mark is next
I if a string is next
2 if a numeric value is next.

For example,

10 IF TYP(2)=0 THEN STOP

The following table specifies exactly how many bytes are required
to internally represent a floating point value as a function of
the precision of your version of BASIC.

PRECISION BYTES

2 2
4 3
6 4
B 5

10 6
12 7
14 B

Thus, if the precison of your version of BASIC is S, each numeric
value will occupy exactly 5 bytes of file space. Character
strings of any length may be written to a file. Strings with
length less than or equal to 255 bytes (inclUding 0) require a

North Star BASIC Version 6 16

,
!I

---"
number of bytes equal to 2 plus the actual length of the string ~

written. Strings with length greater than 255 characters require
3 plus the actual length. Note that when computing the total
amount of data that will fit into a file, one byte must be
reserved for the end-mark.

READ #<file number> %<file pointer>,<list of variables>
WRITE #<file number> %<file pointer>,<list of items>

Random READ and WRITE statements differ from sequential READ
and WRITE statements in that they specify the file pointer
value before performing the read or write. The file pointer
is a byte address within the file. Thus BASIC programs may
organize files into logical records of any size, or even
into variable sized records. For example, the following
statement will read three values from the xth 37-byte record
in file number 1.

10 READ #1 %37*X,A,B,C$

Normally, as described above. at the end of any WRITE statement
an end-mark is written following the last item written. FOr some
applications such as modifying an item within a record, or to
save bytes within a record, it may be desirable to prevent
writing the end-mark at the end of the WRITE statement. When the
reserved word NOENDMARK is the last item in the WRITE statement
item list, then no end-mark will be written.

20 WRITE #J %X ,SIN(J) ,NOENDMARK

Random file accessing is·an advanced technique which provides a
great deal of flexibility but also allows the possibility of
errors. Erroneous calCUlation of file pointer addresses can
result in unpredictable and catastrophic errors.

17 North Star BASIC Version 6

'-

-

LOADING AND USING BASIC

The process of creating a version of BASIC which accommodates
your own terminal I/O conventions and memory size is described in
the DOS manual.

In the event that you leave BASIC for some reason (e.g. to
execute a DOS command, or because of a system interruption) BASIC
may be re-entered at one of the following entry points. It is
assumed here that you have a standard assembly of BASIC with
origin at 2A00 hex.

This is the initialization entry point for BASIC. Entry at
this address will result in a nlllr BASIC program.

2A04 T~Js j._~_~._conti!}.ue entry point. ~ny _p-!ggram tha~ existed .
at the time of interruotion will still exist, but the

val"lie-- of afi tempora-ry'" varIables w{li be destroyed. For
example,

SAVE TEST1
FILE ERROR
BYE

I*CR TEST1 10
*TY TEST1 2
*JP 2Ae4
READY

ISAVE TEST1
READY

North Star BASIC version 6 18

Appendix: SAMPLE PROGRAMS

100 REM A NUMERIC SORT PROGRAM
110 REM
120 DIM A(15)
130 PRINT "INPUT FIFTEEN VALUES, ONE VALUE PER LINE"
140 FOR J=l TO 15
150 INPUT A(J)
160 NEXT
170 REM DO EXCHANGE SORT UNTIL ALL IN ORDER
175 F=0 \ REM THIS FLAG USED TO SIGNAL WHETHER ARRAY IN ORDER YET
180 FOR J=2 TO 15
190 IF A(J-l)<=A(J) THEN 220
200 T=A(J)\ A(J)=A(J-l)\ A(J-l)=T\ REM EXCHANGE A(J) AND AIJ-l)
210 F=l\ REM SET FLAG
220 NEXT
230 IF F=l THEN 175\ REM LOOP IF EXCHANGES HAPPENED
240 PRINT "SORTED ARRAY: ",
250 "OR J=l TO 15\ PRINT A(J) ,\ NEXT

100 REM CHARACTER SORT
110 REM EXAMPLE USING STRINGS AND FUNCTION
115 DIM A$ (72) ..;
120 INPUl' "TYPE A STRING OF CHARACTERS: ",A$
130 IF LEN(A$)=0 THEN 120
140 IF FNA(LEN(A$))=l THEN 140\ REM CALL FNA UNTIL IT RETURNS ZERO VALUE
150 PRINT "SORTED ARRAY: II, A$
155 END
160 DEF FNAIN)\ REM CHARACTER SORT
170 REM RETURN 0 IF A$ SORTED, ELSE RETURN 1
175 F=0
180 FOR J=2 TO N
190 IF A$(J-l,J-l)<=A$(J,J) THEN 220
200 T$=A$(J,J)\ A$(J,J)=A$(J-l,J-l)\ A$(J-l,J-l)=T$
210 F=l
220 NEXT
230 RETURN F
240 FNEND

-

•

•

19 North Star BASIC Version 6

-.

-
-

100 REM INPUT A STRING AND CHECK THAT IT IS A LEGAL INTEGER
105 REM
110 DIM A$(72)
115 INPUT "TYPE AN INTEGER: ",A$
120 IF LEN(A$)=0 OR LEN(A$»8 THEN GOTO 500
130 FOR J=l TO LEN(A$)
140 IF A$(J"J)<lIfj" THEN 500
145 IF A$(J,J»"9" THEN 500
150 NEX1' J
155 PRINT liTHE INTEGER IS OK: ",VAL(A$)
160 GOTO 115
500 REM
SHJ PRINT "NOT AN INTEGER! tI

520 GOTO 115

100 REM
110 REM PRINT A SINE WAVE VERTICALLY ON THE PAGE
115 FOR J=l TO 100 STEP .1
120 T=SIN(J)
130 S=INT(30*T)
140 PRINT TAB(30+S) ,"*"
150 NEXT
160 STOP

100 REM
110 REM PRINT A TABLE OF FORMATTED VALUES
120 REI~

130 FOR J=l TO 100
140 PRINT %3I,J,
150 PRINT %6F3,SIN(J) ,%7F4,COS(J),
160 PRINT U0E3,EXP(J) ,
170 PRINT %12F10,RND(0)
180 NEXT

North Star BASIC Version 6 20

100 REM PRINT THE CONTENTS OF AN UNKNOWN SEQUENTIAL FILE
120 DIM A$ (1000)
140 INPUT "FILE NAME: ",8$
160 OPEN #0,B$
180 IF TYP(0)=0 THEN END
200 IF TYP(0)=1 THEN 300
220 READ #0,N
240 PRINT N
260 GOTO 180
300 READ #0 ,A$
320 PRINT A$
340 GOTO 180

100 REM CONSTRUCT A FILE CONTAINING NUMERIC SQUARES,
110 REM AND THEN USE RANDOM ACCESS TO COMPUTE SQUARES
120 REM OF TYPED INPUT VALUES
130 OPEN #0, lI TESTFILE"
140 FOR J=0 TO 500
150 wRITE #0,JT2
160 NEXT
170 INPUT "X=",X
180 IF X<0 OR X>500 THEN END
190 READ #0%5*X,X2\ REM EACH FP VALUE USES 5 BYTES
200 PRINT "X SQUARED: ",X2
220 GOTO 170

•

21 North star BASIC Version 6

•

-
•

Appendix 2: The Line Editor

This section describes an advanced method of editting BASIC
program lines. For the purpose of this discussion, the term Mold
line" will reter to a line of the BASIC proqram which is to be
edi tted. 'The EDI'!' command may be used to designate which program
line is to become the old line, e.g.,

EDI'I' HHJ

Otherwise, the most recently typed-in program line is
automatically designated the old line.

'I'ihen typing in a "new line" to BASIC, the old line may be used as
a "template" for creating the new line. Special editting
characters may be typed to cause parts of the old line to be used
In contructing the new line. Use of the line editor will result
in dramatically more convenient program modification.

When a new line is entered with the assistance of the line
editor, it is as if the new line was entered in the ~normal~

manner. Thus a new line can have either the same or a different
line number as the old line. For example, if the new-line line
number is the same as the old line, then the new line will
replace the old line in the program.

A line edit is terminated as soon as a carriage return is typed.
If an illegal editting command is attempted, the line editor will
ring a bell and perform no action.

During the entering of a new line, there are two "invisible
pointers" maintained, one which locates a character position in
the old line, and one which locates a character position in the
new line. ~'ihen beginning to enter a new line to 8ASIC, both
pointers locate the first character position. Typing a normal
(non-editting) character will advance both pointers by one
position. The editting character control-G will cause the
characters in the old line to the right of the old line pointer
to be printed as part of the new line. Thus, for example, if the
line

100 PRINT ,.~************

was entered as part of a program, and the missing end quote mark
was discovered, the error could be corrected by typing EDIT 1~0,

then control-G, then a quote mark, and then a carriage return.
It it was aesired to make line 234 do the same PRINT statement,
then the following could be typed to accomplish this: 234
followed by control-G followed by a carriage return. It is
suggested that you try these and similar examples before reading
on. Now follows descriptions of each of the editting control
characters.

Contro!-G Copy rest ot old line to end of new line.
This command will print the characters from the current
pointer position in the old line as part of the new
line.

Control-A Copy one character from old line.
This command will print one character from the current
pointer position of the old line as part of the new
line. Both pointers will be advanced one character
position.

Control-Q Back up one character.
This command will erase the last character of the new
line, and also back up the old line and new line
pointers. A left-arrow (under-line on some terminals)
will be typed to indicate that this command was typed.

Control-Z Erase one character from old line.
This command advances the old line pointer by one
character position. This command would be used to
remove undesired characters from the old line. A per
cent character (%) is printed to indicate that this
command was typed.

Control-D Copy up to specified character.
'I'his command requires a second character to be type-d
before it is executed. The command will copy the
contents at the old line up to, but not including the
first occurence of the specified character to the new
line.

Control-Y Toggle insert mode.
hhen entering a new line, insert mode is '·otf". ~hen

insert mode is off, then typing normal characters will
advance the old line pointer. When insert mode is
"on M

, then typing normal characters will not advance
the old line pointer. Thus, insert mode may be used to
add some omitted characters from the old line. A lett
angle bracket will be typed to indicate entering insert
mode, and a right angle bracket (» will be typed to
indicate leaving insert mode.

Control-N He-edit new line.
This command erases the current new line and permits
re-entering the new line. The partially complete new
line becomes the old line for subsequent editting. (Of
course, the EDIT command could be typed to select a
different old line.) An at-sign (@) is typed to
indicate that this command was typed.

-.

•

..
•

